If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6k^2+37k+56=0
a = 6; b = 37; c = +56;
Δ = b2-4ac
Δ = 372-4·6·56
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(37)-5}{2*6}=\frac{-42}{12} =-3+1/2 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(37)+5}{2*6}=\frac{-32}{12} =-2+2/3 $
| -114=-6+9b | | y=3.77+1.75 | | 12m+2=2136 | | 13x-5=7x+5 | | 13x-5=7x=5 | | -58=-6-4x | | 3y=36-8 | | x+x^2-0.29922=0 | | 4x-2(x=1.75)=4 | | 18x^2+57x+35=0 | | 19=v/5-10 | | 6(b-3)=3(b-6) | | 6k^2+37k-30=0 | | 7x+35+25=180 | | 3y=36+8 | | 15=4w-13 | | x/2+9=31 | | 2(4+8x)=104 | | x+x^2-0.292=0 | | 8n^2-17n+9=0 | | ???x14=84 | | 5v^2=v+4 | | 5/7x+32=67 | | (5x+3)+(5x+3)+(11x-15)=180 | | 33=-3+6x | | t+14/4=8 | | 9x+14+3x-2=180 | | 6x^2-5x-4=90 | | (5x-4)(4x-2)=180 | | -7(6-5r)=-147 | | 65-u=294 | | -7x+10=-8 |